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Recursive solution for beam dynamics of periodic focusing channels
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We present recursive analysis for beam dynamics of periodic focusing channels based on the Fourier
coefficients of the focusing function. Formulas for orbit stability and the envelope function are derived. The
results should be useful for numerical calculation and for developing analytical understanding of channels
employing extended focusing elements. Applications to muon ionization cooling channels are discussed.
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I. INTRODUCTION

Periodic focusing channels serve important functions
particle accelerators, for example, as a beam transport
between two accelerator sections or as a special beam
nipulation station for cooling@1–4#. In designing a channel
it is necessary to have an efficient method to compute
beam properties starting from the arrangement of the foc
ing elements. For high-energy accelerators employing qu
rupole magnets, the focusing elements can usually be
garded as simple lenses. The beam dynamics analysis
then be based on the manipulation of a few matrices@1#.
However, this approach does not work for other cases
important example is the solenoidal focusing channel p
posed recently for ionization cooling of muon beams@5#,
where the solenoidal field extends the whole length of
channel. In this paper we present a systematic treatmen
the beam dynamics in general periodic channels using
perturbation technique, derive formulas for orbit stability a
envelope function, and discuss applications to the soleno
focusing channels considered for muon cooling. Some
pects of our treatment exist in the literature. However,
analysis is more systematic, yields results, and connec
the established results on Hill’s equation, studied by Hill
his 1877 memoir on the motion of the lunar perigee@6# and
continued by others@7–9#. As far as we are aware, howeve
these results have not been properly appreciated in the b
physics community until now.

Although this paper is on beam dynamics in accelerat
it deals essentially with the stability and oscillation amp
tude of an anharmonic oscillator with periodic restori
force. An anharmonic oscillator is a basic model for num
ous physical systems. Therefore, the presented mathema
technique and results should be useful beyond linear op
in accelerators. Knowledge of beam optics is not neces
to appreciate these results, and we made an effort to be p
gogical.

II. THEORY

A. Standard formalism

Let us briefly summarize the standard approach for be
dynamics analysis of a periodic focusing channel. The eq
tion for transverse motion is@1#
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d2x~s!

ds2
1K~s!x~s!50. ~1!

Herex is the transverse displacement of a particle ands is its
longitudinal coordinate.K(s), referred to as the focusing
function, describes the arrangement of focusing elements
is assumed to be periodic with a periodL: K(s1L)5K(s).
For a particle of chargeq and longitudinal momentumps ,
K(s)5qB1(s)/ps in a quadrupole channel of field gradie
B1(s) and K(s)5@qBs(s)/2ps#

2 in a solenoid channel o
on-axis fieldBs(s). The solution of Eq.~1! is conveniently
parametrized in the Floquet formx(s)5Aeb(s) cos@c(s)
1f#. Here e and f are constants specifying a particul
particle within a beam,b(s) is a periodic function referred to
as the envelope function, andc(s)5*0

sds̄/b( s̄) is the phase
advance. The phase advance in one periodm5c(L) and the
envelope functionb are quantities of fundamental impo
tance in beam physics:m reflects the basic frequency of th
system andb(s) gives the scale and thes-dependent profile
of the beam size.

Computations ofm, b, and other quantities are usual
carried out by constructing the transfer matrixR defined as
follows:

F x~s!

x8~s!
G5R~s!F x~0!

x8~0!
G . ~2!

The elements ofR are

R~s!5F C~s! S~s!

C8~s! S8~s!
G . ~3!

Here, the prime indicates differentiation with respect tos.
The ‘‘cosinelike’’ orbit C(s) and the ‘‘sinelike’’ orbitS(s)
are special solutions of Eq.~1! satisfying the initial condi-
tionsC(0)51, C8(0)50, S(0)50, andS8(0)51. In terms
of c, b, anda52b8(s)/2, the transfer matrix is
©2001 The American Physical Society02-1
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R~s!5F Ab~s!

b~0!
@cosc1a~0!sinc# Ab~0!b~s!sinc

a~0!2a~s!

Ab~0!b~s!
cosc2

11a~0!a~s!

Ab~0!b~s!
sinc Ab~0!

b~s!
@cosc2a~s!sinc#

G . ~4!
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Let the trace of the one-period matrix be

D[Tr R~L !5C~L !1S8~L !. ~5!

The quantityD is important since it enters into the stabili
criteria of the motion in a channel. The motion is stable
and only if @10#

uDu<2. ~6!

For stable motion, the one-period phase advancem is then
given by

cosm5
D

2
. ~7!

The value of the envelope function ats50 is given by

b~0!5
1

sinm
R12~L !5

1

sinm
S~L !. ~8!

The value ofb(s) at an arbitrarys can be obtained by con
structing a transfer matrix from the points to s1L.

Explicit calculation is greatly simplified when the focu
ing elements can be considered as simple lenses. The
period transfer matrix can then be obtained by multiplying
small number of simple matrices representing focusing
ments and free spaces. Unfortunately, this simplification
not applicable for channels consisting of extended focus
elements, as in the case of solenoidal focusing.

B. Recursive solution

To develop a more general approach, we begin by
panding the focusing function in Fourier series as follows

S L

p D 2

K~s!5 (
n52`

`

qnei2nps/L5q01q̃~§!. ~9!

Here

§5ps/L, ~10!

is the scaleds variable with periodp. Note thatqn and§ are
dimensionless. SinceK(s) is real,qn* 5q2n , whereqn* is
the complex conjugate ofqn .1 The constant partq0 is im-

1In literature for Hill’s equation, it is often assumed thatK(s) is
an even function ins, implying thatqn are real. We will not need
this assumption here.
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portant sinceAq0 is the fundamental frequency. The var
able part, denoted by the symbolq̃(§), may be regarded a
small in the sense that its average vanishes, suggesting
Eq. ~1! may be solved iteratively by writing it in the follow
ing form @9#:

d2x

d§2
1q0x52q̃~§!x. ~11!

The solution of the formx5(k50
` xk is determined from the

recursive relations

ẍ01q0x050 and ẍk1q0xk52q̃xk21 for k>1,
~12!

where the dots indicate differentiation with respect to§. Ini-
tial conditions forx0(§) are chosen to be the same as tho
for x(§), while xk(0)5 ẋk(0)50 for k.0. The two indepen-
dent solutionsu(§)5(k50

` uk(§) andv(§)5(k50
` vk(§) sat-

isfying the initial conditionsu(0)51 and u̇(0)50 and

v(0)50 andv̇(0)51, respectively, are given by the follow
ing recursive relations:

u0~§!5cos~Aq0§! and v0~§!5
sin~Aq0§!

Aq0

, ~13!

uk~§!52E
0

§

v0~§2 §̄ !q̃~ §̄ !uk21~ §̄ !d§̄, ~14!

vk~§!52E
0

§

v0~§2 §̄ !q̃~ §̄ !vk21~ §̄ !d§̄. ~15!

The solutions in thes variable are then given by a simpl
rescaling

C~s!5u~§! and S~s!5
L

p
v~§!. ~16!

This completes the discussion of the general procedure
computing theR matrix and other beam dynamics quantiti
recursively, based on the Fourier coefficients of the focus
function.

C. Stability criteria

For more explicit results, let us work out the recursi
expansion to some low orders. Consider first the trace

D5u~p!1 v̇~p!5D01D11D21D31, . . . . ~17!
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The zeroth-order termD0 is easy to get from Eq.~13! as

D052 cos~Aq0p!, ~18!

while Dk is, in view of Eqs.~14!,~15!,

Dk52E
0

p

d§ q̃~§!@v0~p2§!uk21~§!1u0~p2§!vk21~§!#.

~19!
05650
The first-order termD1 vanishes because it can be reduced
an integral over one period of the functionq̃, i.e.,

D152
sin~Aq0p!

Aq0
E

0

p

q̃~§!d§50. ~20!

The second-order termD2 is equal to the integral
th

ws

-order

er term
E
0

p

d§ q̃~§!E
0

§

d§̄ q̃~ §̄ !v0~§2 §̄ !@v0~p2§!u0~ §̄ !1u0~p2§!v0~ §̄ !#

5E
0

p

d§E
0

§

d§̄ q̃~§!q̃~ §̄ !
sin@Aq0~§2 §̄ !#sin@Aq0~p2§1 §̄ !#

q0

5
1

q0
(

m,n52`

`

q̃mq̃nE
0

p

d§E
0

§

d§̄ ei2n§ei2m§̄ sin@•••#sin@•••#. ~21!

Here and in the following,q̃n is defined to beq̃n5qn for nÞ0 andq̃050. In the Appendix we show that the terms wi
mÞ2n in the above sum cancel out. ComputingD2 by collecting the contributions from them52n terms and adding toD0,
we obtain the following simple expression forD valid to the second order:

D52 cos~Aq0p!1
p sinAq0p

2Aq0
(
n51

` uqnu2

q02n2
1, . . . , . ~22!

At this point we remark that an exact expression forD was obtained by Hill in terms of an infinite determinant as follo
@6,7#:

D5224 sin2S p

2
Aq0DD. ~23!

HereD is an infinite determinant, known as Hill’s determinant, given by@11#

D5*
••• ••• ••• ••• ••• ••• •••

••• 1
q21

q0216

q22

q0216

q23

q0216

q24

q0216
•••

•••

q1

q024
1

q21

q024

q22

q024

q23

q024
•••

•••

q2

q020

q1

q020
1

q21

q020

q22

q020
•••

•••

q3

q024

q2

q024

q1

q024
1

q21

q024
•••

•••

q4

q0216

q3

q0216

q2

q0216

q1

q0216
1 •••

••• ••• ••• ••• ••• ••• •••

* . ~24!

This determinant can be expanded in a power series in$qn%. Inserting the result into Eq.~23!, one obtainsD as a power series
in $qn%, which is in fact identical to the recursive solution found above. Indeed, it is not difficult to verify the second
result Eq.~22! by expanding the Hill’s determinant. It turns out that explicit expressions ofDk for k.2 are more easily
obtained by expanding the Hill’s determinant than by carrying out the integrals in the recursive method. The third-ord
is @9#
2-3
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D35
p sinAq0p

4Aq0
(

m,n51

` Re~qmqnqm1n* !~m21n21mn23q0!

~q02m2!~q02n2!@q02~m1n!2#
. ~25!
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Here the symbol Re implies taking the real part.
We note the important role of the dimensionless f

quency Aq0 in determining the general character of t
beam transport properties in periodic channels. Equation~22!
indicates that the stability condition Eq.~6! could be violated
when Aq0;n for any integern, implying that the motion
becomes unstable. This is referred to as thenp resonance
since the one-period phase advance becomesnp. The
strength of thenp resonance depends on the magnitude
the coefficientqn . From Eq.~22!, assuming that the corre
sponding harmonics are not too weak, the stability bou
aries are roughly given by

Aq0;n6
1

2 Uqn

q0
U1 5

16Uqn

q0
U2

1, . . . , . ~26!

The stability as a function ofAq0 can be translated to th
stability as a function of other physical parameters of
system, such as the particle momentum or the rms fi
strength.

D. Envelope function

We now turn our attention to the envelope functionb(s).
To computeb(0) from Eqs.~8,16!, we need to findv(p)
5(k50

` vk(p). The zeroth-order termv0(p) is given in Eq.
~13!, andv1(p) can be worked out using Eq.~15! as
he

as
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v1~p!52 (
n52`

`

q̃nE
0

p

d§ ei2n§
sin@Aq0~p2§!#sin~Aq0§!

q0

5
sin~Aq0p!

Aq0
(
n51

`
Re@qn#

n22q0

. ~27!

Adding these contributions, the envelope function ats50 to
first order becomes

b~0!5
L

p

sin~Aq0p!

Aq0 sinm
F11 (

n51

`
Re@qn#

n22q0

1, . . . ,G . ~28!

The calculation ofb(s0) at an arbitrary locations0 is similar
to the above except that we need to move the period from
interval 0<s<L to s0<s<s01L. Accordingly, the Fourier
coefficientqn in Eq. ~9! is replaced byqnei2n§0, where§0
5ps0 /L. It then follows that the expression forb(s) is sim-
ply obtained from the right-hand side of Eq.~28! by the
replacementqn→qnei2n§:

b~s!5
L

p

sin~Aq0p!

Aq0 sinm
F11 (

n51

`
Re@qnei2nps/L#

n22q0

1, . . . ,G .

~29!

We have also computed the second-order correctionb2. Af-
ter some algebra~done with Mathematica®):
b2~s!5
L

p

sin~Aq0p!

Aq0 sinm

1

4 H p cot~Aq0p!

Aq0
(
n51

` uqnu2

n22q0

1 (
m,n51

` F ~m21mn1n223q0!Re@qmqnei2(m1n)ps/L#

~m22q0!~n22q0!@~m1n!22q0#

1
~m22mn1n223q0!Re@qmqn* ei2(m2n)ps/L#

~m22q0!~n22q0!@~m2n!22q0#
G J . ~30!
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Note thatb2 contributes a constant term

(
n51

`

uqnu2
Aq0p~n22q0!cot~Aq0p!2~n223q0!

4 q0~n22q0!2
,

~31!

in the square bracket of Eq.~29!. The constant term inb(s)
could be important for optimization since it determines t
averageb value.

III. APPLICATION EXAMPLES

The possibility of muon colliders or neutrino factories h
received much attention recently@5,12,13#. The biggest chal-
lenge is to reduce the beam emittance~cooling! to a useful
level before a significant amount of muons decay. Ionizat
energy loss of muons in materials is the only known proc
that is sufficiently fast for this purpose. However, multip
scattering tends to enlarge beam emittance~heating! and its
effect is proportional to the beam size. Thus, a muon be
has to be tightly focused during cooling. Channels with co
tinuous solenoidal focusing are the major candidates. S
the canonical angular momentum will build up in a unipo
solenoid cooling channel, the on-axis field polarity must
changed@14,12#. One type of design is to have the fie
periodically switched. A natural thought along this line is t
‘‘FOFO’’ channel, whose on-axis field varies sinusoidal
@15#. In order to reach smaller beta function at absorbers
2-4
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larger momentum acceptance, variations are derived from
simple FOFO channel. Here, two examples are discus
briefly to show the accuracy of our approximate formul
Understanding of channel behavior obtained from analyt
analysis is mentioned; however, it is not our focus here,
thus, not meant to be comprehensive.

For periodic solenoid channels

q05S qL

2pps
D 2

^Bs
2&one-period. ~32!

Here, the angular brackets denote taking the average
one period. From Eqs.~26!, ~32!, the width of the unstable
region, stopband, in relative momentum is aboutuqn /q0u.
For a FOFO channel, the focusing functionK(s)
5(qB max/2ps)

2sin2(ps/L);12cos(2§), thus the only har-
monic content isuq61 /q0u51/2. This is large and results i
small momentum acceptance. To improve performan
more harmonics are added.

In a ‘‘superFOFO’’ channel considered at Lawrence B
keley National Laboratory@16#, Bs(s)5B max/1.7@sin(ps/L)
11.1 sin(5ps/L)10.2 sin(5ps/L)# and its Fourier coefficients
qn at ps5100 MeV/c are $q0 ,q61 , . . . ,q65%5$2.681,
0.977,21.072,20.959,20.262,20.024%. Scaling the co-
efficients by 1/ps

2 , in Fig. 1 we plotD as a function ofps in
various approximations. The figure exhibits the stabil

FIG. 1. Stability boundaries of a ‘‘SuperFOFO’’ channel.

FIG. 2. Stability boundaries of a fast-field-flip solenoid
channel.
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boundaries and reveals the accuracy of the approximate
mulas. We also indicated the unperturbed location (Aq0
5n) of the np resonance with vertical lines. Note that th
third-order approximation ofD reproduces reasonably we
the particularly interesting first two passbands atps>0.2 and
0.1 GeV/c<ps<0.14 GeV/c. In the ‘‘fast-field-flip’’ chan-
nel proposed by Balbekov@17#, the coefficients~for a 200
MeV/c muon and magnetic period of 5.19 m! are
$q0 ,q61 , . . . ,q614%5$3.8186, 20.0039, 20.0047,
20.0060, 20.2239, 20.3203, 20.3345, 20.2976,
20.2383, 20.1759, 20.1212, 20.0783, 20.0477,
20.0272,20.0146%. Note that the higher-order coefficien
are strongly suppressed and thus yield better momentum
ceptance. The corresponding stability calculation is shown
Fig. 2. Notice the second-order formula Eq.~22! works ex-
tremely well due to the weakness of the harmonics. The
ure demonstrates clearly that thenth stopband width is pro-
portional to uqnu. Due to the smallness of the first thre
harmonics, thep resonance barely exists, and the 2p and
3p resonances are completely suppressed.

Optimizing the envelope functionb(s) by a suitable ar-
rangement of focusing elements is one of the most impor

FIG. 3. b functions of a SuperFOFO channel in~a! the first and
~b! the second passbands.

FIG. 4. b function of a fast-field-flip solenoidal channel.
2-5
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tasks in accelerator design. The simplicity of Eq.~29! should
make it a useful tool for this task. In order to reduce t
beam size, theb(s) should in general be small. This requir
ment is especially critical for the ionization cooling of muo
beams: the overallb value should be small in order to b
able to transport the large emittance beam; the minimumb
should be at the absorber locations and be as small as
sible in order to minimize the heating due to multiple sc
tering @18,12#. The form of Eq.~29! already suggests a few
general strategies for obtaining a smallb(s): ~1! shorter pe-
riod; ~2! stronger field~resulting in largerq0 and higher-
order passband!; ~3! larger phase-advance term sinm; and~4!
larger harmonics to cancel the unity term within the brack
of Eq. ~29!. Furthermore, it is helpful to make Eq.~31! nega-
tive and as large as possible. Note that these strategie
often in conflict with the constraint of orbit stability an
available magnetic field strength.

Figures 3~a! and 3~b! are plots of theb functions for the
superFOFO channel in the first and second passbandsps

5200 and 120 MeV!, respectively. We see that the secon
order formula gives a reasonable approximation in this ca
Figure 4 shows a similar plot for the case of the fast-fl
channel in the second momentum passbandps

5300 MeV). Due to the suppression of harmonics, the fi
order formula is already quite accurate.

We have demonstrated the applicability of the appro
mate formulas to solenoid channels for muon ionizat
cooling, obtained insight into a channel’s performance, a
provided useful design guidelines. However, reaching a g
design is much more involved and is a subject beyond
paper.

IV. CONCLUSION

To conclude, we developed a systematic treatment
beam dynamics in periodic focusing channels. A general
mula is given for theb function. Also we have rederived
approximate formulas for the trace of the one-period tran
matrix, which exist in the mathematical literature but ha
not been appreciated in the beam physics community. F
mulas for other quantities can be derived similarly. The
results, especially Eqs.~22! and~29!, should be important for
analyzing and optimizing periodic focusing channels that
the basic building blocks in accelerators, particularly
cases where thin lens approximation fails.
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APPENDIX

If we let v5Aq0, Eq. ~21! gives

D25
1

2v2 (
m,n52`

`

q̃mq̃nE
0

p

d§E
0

§

d§̄ ei2n§ei2m§̄

3@cosvp2cosv~p22§12§̄ !#.

The first term, containing cosvp, becomes

cosvp

2v2 E
0

p

d§E
0

§

d§̄ (
m,n52`

`

q̃mq̃nei2(n§1m§̄)

5
cosvp

4v2 E
0

p

d§E
0

p

d§̄ (
m,n52`

`

q̃mq̃nei2(n§1m§̄);uq̃0u2

50.

Here, the change of the integration limit is valid since t
integrand is symmetric about§ and §̄.

The second term yields

D25I ~v!1I ~2v!,

where

I ~v!52
eivp

4v2 (
m,n52`

`

q̃mq̃nE
0

p

d§E
0

§

d§̄ ei2(n2v)§ei2(m1v) §̄

52
eivp

4v2 (
m,n52`

`
q̃mq̃n

2i ~m1v!
E

0

p

d§@ei2(m1n)§

2ei2(n2v)§#.

The first integrand gives zero unlessm1n50, while the
second integrand leads to an asymmetric form inv and thus
does not contribute toD2. Therefore, we have

D25
p

4v2 (
n52`

`

uq̃nu2
1

2i F eivp

n2v
1

e2 ivp

n1v G
5

p

4v2 (
n52`

` uq̃nu2

n22v2
@v sinvp2 i n cosvp#.

The last term sums to zero since it is odd inn and q̃050.
Thus, we obtain

D25
p sinvp

2v (
n51

` uq̃nu2

n22v2
,

which is the second term in Eq.~22!.
2-6
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